An Overview of the Runtime Verification Tool
Java PathExplorer

Klaus Havelund

Kestrel Technology

NASA Ames Research Center
California, USA

http://ase.arc.nasa.gov/havelund

Grigore Rogu*

Department of Computer Science
University of Illinois at Urbana-Champaign
Illinois, USA

http://cs.uiuc.edu/grosu

Abstract. We present an overview of the Java PathExplorer runtime verification
tool, in short referred to as JPAX. JPAX can monitor the execution of a Java
program and check that it conforms with a set of user provided properties formulated
in temporal logic. JPAX can in addition analyze the program for concurrency errors
such as deadlocks and data races. The concurrency analysis requires no user pro-
vided specification. The tool facilitates automated instrumentation of a program’s
bytecode, which when executed will emit an event stream, the execution trace, to an
observer. The observer dispatches the incoming event stream to a set of observer pro-
cesses, each performing a specialized analysis, such as the temporal logic verification,
the deadlock analysis and the data race analysis. Temporal logic specifications can
be formulated by the user in the Maude rewriting logic, where Maude is a high-speed
rewriting system for equational logic, but here extended with executable temporal
logic. The Maude rewriting engine is then activated as an event driven monitoring
process. Alternatively, temporal specifications can be translated into automata or
algorithms that can efficiently check the event stream. JPAX can be used during
program testing to gain increased information about program executions, and can
potentially furthermore be applied during operation to survey safety critical systems.

Keywords: Runtime verification, trace analysis, temporal logic, rewriting logic,
Maude, automata, dynamic programming, program instrumentation, deadlocks, data
races, Java.

1. Introduction

Correctness of software is becoming an increasingly important issue in
many branches of our society. This is not the least true for NASA’s
space agencies, where spacecraft, rover and avionics technology must
satisfy very high safety standards. Recent space mission failures have
even further emphasized this. Traditional ad-hoc testing of software

* Supported in part by joint NSF/NASA grant CCR-0234524.

© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

fmsd-rv01l.tex; 28/08/2003; 15:20; p.1



2

systems still seems to be the main approach to achieve higher confidence
in software. By traditional testing we mean some manual, and at best
systematic, way of generating test cases and some manual, ad-hoc way
of evaluating the results of running the test cases. Since evaluating test
case executions manually is time consuming, it becomes hard to run
large collections of test cases in an automated fashion, for example
overnight. Hence, there is a need for generating test oracles in an
easy and automated manner, preferably from high level specifications.
Furthermore, it is naive to believe that all errors in a software system
can be detected before deployment. Hence, one can argue for an addi-
tional need to use the test oracles for monitoring the program during
execution. This paper presents a system, called Java PathExplorer, or
JPAX for short, that can monitor the execution of Java programs, and
check that they conform with user provided high level temporal logic
specifications. In addition, JPAX analyzes programs for concurrency
errors, such as deadlocks and data races, also by analyzing single pro-
gram executions. In this paper we shall, however, primarily focus on
presenting the temporal logic checking aspect of JPaX.

The algorithms presented all take as input an execution trace, being
a sequence of events relevant for the analysis. An execution trace is
obtained by running an instrumented version of the program. Only
the instrumentation needs to be modified in case programs in other
languages than Java need to be monitored. The analysis algorithms
can be re-used. A case study of 35,000 lines of C++ code for a rover
controller has for example been carried out, as will be explained.

Concerning the first form of analysis, temporal logic verification, we
consider two forms of logic: future time temporal logic and past time
temporal logic. We first show how these can be implemented in Maude
(Clavel et al., 1999a; Clavel et al., 1999b; Clavel et al., 2000), a high-
performance system supporting both rewriting logic and membership
equational logic. The logics are implemented by providing their syntax
in Maude’s very convenient mixfix operator notation, and by giving an
operational semantics of the temporal operators. The implementation
is extremely efficient. The current version of Maude can do up to 3
million rewritings per second on 800Mhz processors, and its compiled
version is intended to support 15 million rewritings per second. The
Maude rewriting engine is used as an event driven monitoring pro-
cess, performing the event analysis. The implementation of both these
logics in Maude together with a module that handles propositional
logic covers less than 130 lines. Therefore, defining new logics should
be very feasible for advanced users. Second, we show how one from
a specification written in temporal logic (be it future time or past
time) can generate an observer automaton or algorithm that checks
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the validity of the specification on an execution trace. Such observer
automata/algorithms can be more efficient than the rewriting-based
implementations mentioned above. It especially removes the need for
running Maude as part of the monitoring environment.

Concerning the second form of analysis, concurrency analysis, multi-
threaded software is the source of a particular class of transient errors,
namely deadlocks and data races. These errors can be very hard to
find using standard testing techniques since multi-threaded programs
are typically non-deterministic, and the deadlocks and data races are
therefore only exposed in certain “unlucky” executions. Model checking
can be used to detect such problems, and basically works by trying all
possible executions of the program. Several systems have been devel-
oped recently, that can model check software, for example the Java
PathFinder system (JPF) developed at NASA Ames Research Center
(Havelund and Pressburger, 2000; Visser et al., 2000; Visser et al.,
2003), and similar systems (Godefroid, 1997; Holzmann and Smith,
1999; Stoller, 2000; Corbett et al., 2000; Ball et al., 2001). This can,
however, be very time and memory consuming (often program states
are stored during execution and used to determine whether a state has
been already examined before).

JPAX contains specialized trace analysis algorithms for deadlock
and data race analysis, that from a single random execution trace try
to conclude the presence or the absence of deadlocks and data races
in other traces of the program. The deadlock algorithm is an improve-
ment of the deadlock algorithm presented in (Harrow, 2000) in that
it minimizes the number of false positives (Bensalem and Havelund,
2002). The data race algorithms include the Eraser algorithm (Savage
et al., 1997) for detecting low-level data races, and a new algorithm for
detecting high-level data races (Artho et al., 2003b). These algorithms
are based on the derivation of testable properties that are stronger than
the original properties of deadlock freedom and data race freedom,
but therefore also easier to test. That is, if the program contains a
deadlock or a data race then the likelihood of these algorithms to find
the problem is much higher than the likelihood of actually meeting the
deadlock or data race during execution.

The idea of detailed trace analysis is not new. Beyond being the
foundation of traditional testing, also more sophisticated trace analysis
systems exist. Temporal logic has for example been pursued in the
commercial Temporal Rover tool (Drusinsky, 2000), and in the MaC
tool (Lee et al., 1999). Temporal Rover allows the user to specify future
time and past time temporal formulae, but requires the user to manu-
ally instrument the code. The MaC tool supports past time temporal
logic and is closer in spirit to what we describe in this paper due to its
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automated code instrumentation capability. However, its specification
language is fixed. Neither of these tools provides support for concur-
rency analysis. A more recent approach using alternating automata for
checking future time temporal logic is presented in (Finkbeiner and
Sipma, 2001). A tool like Visual Threads (Harrow, 2000; Savage et al.,
1997) contains hardwired deadlock and low-level data race analysis
algorithms, but only works on Compaq platforms and only on C and
C++. Furthermore, Visual Threads cannot be easily extended by a
user, while JPAX can. We furthermore have improved the deadlock
analysis algorithm to yield fewer false positives, an important objec-
tive if one wants such a tool to be adopted by programmers, and we
have added a high-level data race detection algorithm. JProbe (Sitraka,
2001) is a commercial tool performing deadlock and low-level data race
analysis on Java code. For an overview of recent work in runtime veri-
fication we refer the reader to the proceedings of RV’01 and RV’02, the
1st and 2nd workshops on runtime verification (Havelund and Rosu,
2001a; Havelund and Rosu, 2002).

This paper is a summary of several papers written on Java PathEx-
plorer (Havelund and Rosu, 2001d; Havelund and Rosu, 2001c; Havelund
and Rosu, 2001b; Havelund et al., 2001; Havelund and Rosu, 2002b;
Havelund and Rosu, 2002a; Bensalem and Havelund, 2002; Artho et al.,
2003b; Havelund, 2000; Rosu and Havelund, 2001; Havelund and Rosu,
2000). A rewriting implementation for future time Linear Temporal
Logic (LTL) is presented in (Havelund and Rosu, 2001d) and (Havelund
and Rosu, 2002a). A rewriting implementation of past time LTL is
presented in (Havelund and Rosu, 2001c). Generation of observer au-
tomata for future time LTL is described in (Havelund and Rosu, 2002a).
Generation of observer dynamic programming algorithms for past time
LTL is presented in (Havelund and Rosu, 2002b). Concurrency analysis
is studied in (Havelund, 2000; Bensalem and Havelund, 2002; Artho
et al., 2003b). In (Giannakopoulou and Havelund, 2001) a framework
is described for translating future time LTL to Biichi-like automata.

The paper is organized as follows. Section 2 gives an overview of the
JPAX system architecture. Section 3 introduces the temporal logics
that have been implemented in JPAX, namely future time and past
time temporal logic. Each logic is defined by its syntax and its seman-
tics. Section 4 presents the various algorithms for monitoring the logics.
First (Subsection 4.1) the rewriting based approach is presented, show-
ing how future time and past time logic can be encoded in the Maude
rewriting system, and how Maude is then used as the monitoring engine.
Second (Subsection 4.2) the observer automata/algorithm approach is
presented, showing how efficient observer automata and algorithms can
be generated from future time respectively past time temporal logic.
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Section 5 presents experiments that have been performed using tempo-
ral logic monitoring as well as concurrency analysis. Finally, Section 6
concludes the paper.

2. Architecture of JPAX

Java PathExplorer (JPaX) is a system for monitoring the execution
of Java programs. The system extracts an execution trace from a run-
ning program and verifies that the trace satisfies certain properties.
An execution trace is a sequence of events, of which there are several
kinds as we shall discuss below. Two forms of monitoring are supported:
temporal verification and concurrency analysis. JPAX itself is written
in Java and consists of an instrumentation module and an observer
module, see Figure 1. The instrumentation module automatically in-
struments the bytecode class files of a compiled program by adding
new instructions that when executed generate the execution trace. The
events (forming the execution trace) are either written to a file or to a
socket, in both cases in plain text format. The observer will read the
events correspondingly. In case a socket is used, the observer can run
in parallel with the observed program, even on a different computer,
and perform the analysis in real time.

Specifications

Instrumentation

Java Observer
Program | | _____ >
. =1 Deadlock
Compile \% ;
NI
Bytecode ZS %
= 7
2 5_;>| LTL lj?_' Maude |
Instrument A I:
Instrumented [ : —
Bytecode Execute

Figure 1. Overview of JPaX.
In temporal verification the user provides a specification in temporal

logic of how the observed system is expected to behave. The models
of this specification are all the execution traces that satisfy it. Finite
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execution traces generated by running the program are checked against
the specification for model conformance, and error messages are issued
in case of failure. The temporal logic is built over atomic predicate
names, referred to as propositions, that have been connected to predi-
cates over entities in the observed program, similar to (Lee et al., 1999).
The following example illustrates a very simple specification’:

// instrumentation:

monitor C.x;

proposition A is C.x > 0;
// verification:

formula F1 is []A

It states that we want to monitor the variable x in class C, and in
particular that we want to monitor the predicate C.x > 0, referring
to it by the atomic proposition A. The formula, []A, which states that
A is always true, is the property that is monitored by the observer.
Such formulae can only refer to atomic propositions, and not to general
predicates over the program’s variables. The program is instrumented
to emit events signaling updates of the proposition A. Essentially, the
observer will receive the initial value of each proposition, and then
just the proposition each time its value toggles. Hence suppose for
example during a program execution, that C.x initially is 0 and that
it then changes to 1, then to 2, then to —1 and then to 3. The event
stream observed will be the following sequence consisting of four events:
[(A, false), A, A, A], corresponding to the real events C.x = 0 (initial-
ization), C.x = 1, C.x = -1, and C.x = 3. Note that the assignment
C.x = 2 does not create a toggle since the predicate does not change
value (it is true and stays true). The observer receives this toggle se-
quence and maintains in a local data structure the current value of A.
The observer performs the continuous check of the formula [JA, which
obviously in this case gets violated, initially, as well as at the third
event.

In concurrency analysis, we are analyzing the trace for symptoms
of concurrency problems, such as deadlocks and data races. Events in
this case represent the taking or releasing of locks (needed for deadlock
analysis as well as for data race analysis), and accesses to variables
(needed for data race analysis).

! The specification is in reality represented in two files, an instrumentation spec-
ification (the first two lines), with slightly less attractive syntax, and a verification
specification (the last line), but for clarity we present it here as one file, with idealized
syntax.
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2.1. INSTRUMENTATION MODULE

The Java bytecode instrumentation is performed using the JTrek Java
bytecode engineering tool (Cohen, 2000). JTrek makes it possible to
easily process Java class files (bytecode files), facilitating the exami-
nation of their contents and insertion of new code. The inserted code
can access the contents of various runtime data structures, such as for
example the call-time stack, and will, when eventually executed, emit
events carrying this extracted information to the observer. It works as
follows. JTrek is instructed to perform a “trek” through a program’s
byte code instructions. For each class (within a user defined scope), and
for each method in that class, JTrek sequentially walks though the byte
codes. At each byte code, JTrek calls a method void at(Instruction
instr), which the user of JTrek can override, and to which the current
instruction is passed as parameter. The instruction is represented by an
object of the JTrek specific class Instruction, which has methods for
accessing its opcode (identifying which instruction it is), its arguments,
and other information related to the instruction. JTrek generally pro-
vides a variety of classes, each representing a Java concept that can
be accessed from an instruction, such as for example Statement and
Method, each with methods yielding various kind of information, that
is either atomic (like integers or strings), or other objects that can be
used for further navigation. For example, in the Instruction class,
the method Statement getStatement () returns an object of the class
Statement, representing the statement in which the instruction occurs.
The Statement class in turn contains a method, Method getMethod(),
returning the method in which the statement occurs. In this manner,
as an example, the method in which an instruction instr occurs can
be obtained by the expression: instr.getStatement () . getMethod ().

In the void at(Instruction instr) overridden method defined
in JPaX, a switch-statement branches out depending on what is the
opcode of the instruction. In case an instruction is fit for instrumen-
tation, JTrek allows to insert the call of a method either after or
before the instruction. For each kind of bytecode that we want to
instrument we have defined a class that contains essentially two meth-
ods: void instrument(Instruction instr), which performs the re-
quired instrumentation by inserting a call to the second method, void
action(...), which when executed will emit the relevant information
to the observer. The action method takes as parameter various infor-
mation, such as for example the current contents of the call-time stack,
typically representing what object is operated on, and in case of field
updates, what value to be stored.
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For temporal logic monitoring, the observer expects to receive a se-
quence of events, each of the form toggle(propset), where propset is a set
of propositions, who’s values have toggled. In order to emit such events,
the instrumentation package maintains a state that keeps track of the
current value of each monitored proposition. At each instruction that
updates a variable that is monitored, code is inserted that evaluates the
value of the involved predicates (those that refer to the variable), and
in case the value of a predicate changes, the corresponding proposition
is added to the current event. When all relevant predicates have been
evaluated, the combined event, which is now a set of propositions (who’s
values have changed), is sent to the observer.

For monitoring of concurrency errors, such as deadlocks and data
races, we need to extract information about when locks are taken and
released. For a monitorenter instruction for example, which signals
that a thread takes a lock when entering a synchronized statement,
we extract what object is locked and what thread does it, and similarly
when monitorexit is executed. This gives rise to the following events:
lock(t,o0) (thread t locks object o) and unlock(t,o) (thread ¢ unlocks
object o). For data race analysis, information is additionally needed to
convey when variables are accessed and by which threads.

2.2. OBSERVER MODULE

The observer module is responsible for performing the trace analysis.
It receives the events and dispatches these to a set of observer rules,
each rule performing a particular analysis that has been requested.
Generally, this modular rule based design allows a user to easily define
new runtime verification procedures without interfering with legacy
code. Observer rules are written in Java, but can call programs written
in other languages, such as for example Maude. Maude plays a spe-
cial role in that high level requirement specifications can be written
using equational logic, and the Maude rewriting engine is then used as
a monitoring engine during program execution. More specifically, we
implement various temporal logics in Maude, for example Linear Tem-
poral Logic (LTL), by writing an operational semantics for each logic,
as will be explained in the remainder of the paper. Maude can then be
run in what is called loop mode, which turns Maude into an interactive
system that can receive events, one by one, perform rewriting according
to the operational semantics of the logic, and then wait for the next
event. As will be explained in the paper, we have also implemented a
monitor rule synthesis capability, that translates a collection of future
and past time temporal formulae into a Java program, that monitors
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conformance of the trace with the formulae. Maude can here be used
as a translator that generates the observer programs.

3. Temporal Logic as a Monitoring Requirements Language

Temporal logics are routinely used to express requirements to be proved
or model checked on software or hardware concurrent systems. We
also find them worth investigation as candidates for a monitoring re-
quirements language. In this section we discuss future and past time
temporal logic variants whose models are finite execution traces, as
needed in monitoring, rather than infinite ones. Since a major factor
in the design of JPAX and its underlying theory was efficiency, and
since we were able to devise efficient algorithms for future and past
time temporal logics regarded separately, in the rest of the paper we
investigate them as two distinct logics.

Both future time and past time temporal logics extend propositional
calculus, which can be described by the following syntax:

F := true|false | A|-F |FVF|FAF|F&F|F—F|F«F.

A is a set of propositions (atomic names) and @ represents exclusive
or (xor). Our explicit goal is to develop a testing framework using
temporal logics. Since testing sessions are sooner or later stopped and
a result of the analysis is expected, our execution traces will be finite.
More precisely, we regard a trace as a finite sequence of abstract states.
In practice, these states are generated by events emitted by the program
that we want to observe. If s is a state and a is a proposition, then
a(s) is true if and only if a holds in the state s; what it means for a
proposition to “hold” in a state is intentionally left undefined, but it
can essentially mean anything: a variable is larger than another, a lock
is acquired, an array is sorted, etc. Finite traces will be the models of
the two temporal logics defined below, but it is worth mentioning that
they are regarded differently within the two logics: in future time LTL
a finite trace is a sequence of future events, while in past time LTL it
is a sequence of past events. However, they both interpret the other
propositional operators as expected, that is

t = true is always true,
t |= false is always false,
t=-F iff it is not the case that t &= F,

t=F, op F, iff t=F; or/and/xor/implies/iff t | F3,
when op is V/A/&/— /<.
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3.1. FuTurRE TIME LINEAR TEMPORAL LOGIC

Formulae in classical Linear Temporal Logic (LTL) can be built using
the following operators:

F = true|false | A|—-F |F op F Propositional operators
oF |OF |OF |FUs F|F Uy, F Future time operators

The propositional binary operators, op, are the ones above, and oF
should be read “next F”, OF “eventually F”, OF “always F”, F1 Us F>
“Fy strong until F»”, and Fy U, Fo “F} weak until F5”. An LTL
standard model is a function ¢t : Nt — 27 for some set of atomic
propositions P, i.e., an infinite trace over the alphabet 27 which maps
each time point (a positive natural number) into the set of propositions
that hold at that point. The propositional operators have their obvious
meaning. oF holds for a trace if F' holds in the suffix trace starting
in the next (the second) time point. The formula OF holds if F' holds
in all future time points, while ¢F holds if F' holds in some future
time point. The formula F} U, F5 holds if F5 holds in some future time
point, and until then F; holds. The formula F; U, F> holds if either
F1 holds in all future time points, or otherwise, if F5 holds in some
future time point and until then F; holds. As an example illustrating
the semantics, the formula O(F; — OF) is true if for any time point
it holds that if F} is true then eventually F5 is true. Another property
is O(X — o(Y Us Z)), which states that whenever X holds then from
the next state Y holds until strong eventually Z holds. It is standard
to define a core LTL using only atomic propositions, the propositional
operators = (not) and A (and), and the temporal operators o_ and
_Us _, and then define all other propositional and temporal operators
as derived constructs, such as OF := true Us; F and OF := —~O—F.

Since we want to use future time LTL in a runtime monitoring
setting, we need to formalize what it means for a finite trace to satisfy
an LTL formula. The debatable issue is, of course, what happens at
the end of the trace. One possibility is to consider that all the atomic
propositions fail or succeed; however, this does not seem to be a good
assumption because it may be the case that a proposition held through-
out the trace while a violation will be reported at the end of monitoring.
Driven by experiments, we found that a more reasonable assumption
is to regard a finite trace as an infinite stationary trace in which the
last event is repeated infinitely. If t = s1s2...5, is a finite trace then
we let ¢ denote the trace 8iSit1--.8p for each 1 < ¢ < n. With the
intuitions above we can now define the semantics of finite trace future
time LTL as follows:
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tEa iff  a(s1) holds,
t=oF iff ¢ =F,wheret' =t® ifn>1landt =tifn=1,
tEOF iff () = F for some 1 <i < n,

tE R U By iff t3)|:F2forsomelgj§nand
t0) = Fy forall 1 <i<j,
t|:F1UwF2 iff t):DFlort):Flung.

(4

t=0OF iff ¢ = Fforall1<i<n,
y
(

It is easy to see that if ¢ is a trace of size 1 then t = oF or t = OF
or t = OF if and only if ¢t = F, and that ¢ | Fy Us F» if and only if
t = Fy, and also that t = F} Uy, F» if and only if t = F} or t = Fy. It is
worth noticing that finite trace LTL can behave quite differently from
standard, infinite trace LTL. For example, there are formulae which
are not valid in infinite trace LTL but are valid in finite trace LTL,
such as ¢(0a V O—a), and there are formulae which are satisfiable in
infinite trace LTL but not in finite trace LTL, such as the negation of
the above. The formula above is satisfied by any finite trace because
the last event/state in the trace either satisfies a or it doesn’t.

3.2. PasT TiME LINEAR TEMPORAL LOGIC

We next introduce basic past time LTL operators together with some
operators that we found particularly useful for runtime monitoring,
and which (except for the last) were introduced in (Lee et al., 1999), as
well as their finite trace semantics. Syntactically, we allow the following
formulae:

F = true|false | A|-F | F op F Propositional operators
oF |OF |F |F S; F|F S, F Standard past time operators
TF|LF|[FF)s|[FF)y Monitoring operators

The propositional binary operators, op, are like before, and e F' should
be read “previously F”, O F “eventually in the past F”, OF “always in
the past F”, F} Sg Fo “F} strong since Fy”, Fy S, Fy “F} weak since
Fy’, 1 F “start F”, | F “end F”, and [F}, F») “interval Fy, Fy” with a
strong and a weak version.

If t = s159...5, is a trace then we let i) denote the trace s1ss...s;
for each 1 < i < n. Then the semantics of these operators can be given
as follows:
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tEa iff  a(sy) holds,
t=oF iff ¢ | F, where
t' =ty ifn>landt' =tifn =1,
tEOF iff ty) | F for some 1 <i<mn,
(A=Nul ifft ty EFforalll<i<mn,

tl=F S Fy iff t(;) | F for some 1 < j <n and

tqy I forall j <i <n,
tE R Sy Fy iff tEF S, Fyort= ok,
tETF iff ¢} F and it is not the case that t = o F,
t=l F iff ¢ oF and it is not the case that ¢ E F,
tl=[F1, ), iff t) | Fy for some 1 < j <n and

t)  Fo for all j <i <n,
tE [F1, Fo)w Tt [F1,F2)s or t | O-Fs.

Notice the special semantics of the operator “previously” on a trace
of one state: s = o F' iff s = F. This is consistent with the view that
a trace consisting of exactly one state s is considered like a stationary
infinite trace containing only the state s. We adopted this view because
of intuitions related to monitoring. One can start monitoring a process
potentially at any moment, so the first state in the trace might be
different from the initial state of the monitored process. We think that
the “best guess” one can have w.r.t. the past of the monitored program
is that it was stationary, in a perfectly dual manner to future time finite
trace LTL. Alternatively, one could consider that o F' is false on a trace
of one state for any atomic proposition F', but we find this semantics
inconvenient because some atomic propositions may be related, such as,
for example, a proposition “gate-up” and a proposition “gate-down”;
at any moment, one is true if and only if the other is false, so a seman-
tics allowing both to initially have the same truth value would not be
satisfactory.

The non-standard operators T, |, [-, -)s, and [, _),, were inspired by
work in runtime verification in (Lee et al., 1999). These can be defined
using the standard operators, but we found them often more intuitive
and compact than the usual past time operators in specifying runtime
requirements. T F' is true if and only if F' starts to be true in the
current state, | F'is true if and only if F' ends to be true in the current
state, and [F1, Fy)s is true if and only if F5 was never true since the
last time F7 was observed to be true, including the state when F; was
true; the interval operator, like the “since” operator, has both a strong
and a weak version. For example, if START and DowN are propositions
representing predicates on the state of a web server to be monitored,
say for the last 24 hours, then [START, DOWN), is a property stating
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that the server was rebooted recently and since then it was not down,
while [START, DOWN),, says that the server was not unexpectedly down
recently, meaning that it was either not down at all recently or it was
rebooted and since then it was not down.

As shown later in the paper, one can generate very efficient mon-
itors from past time LTL formulae, based on dynamic programming.
What makes it so suitable for dynamic programming is its recursive
nature: the satisfaction relation for a formula can be calculated along
the execution trace looking only one step backwards:

t=0F iff tEFor(n>1andtg,_1)FOF),
t=oF ifft ¢} Fand (n> 1 implies t(,_1) F OF),
t=FR S F, iff tEFyor

(n>1andt = Fy and t(,_1) = F1 Ss Fb),
tEF Sy F» iff tEFyor

(t = F1 and (n > 1 implies t(,_1) = F1 Sy F2)),
t=[F,F)s iff t} F;and

(t = Fior (n>1and tg,_1 = [F1, F2)s)),
tE [F1, Fo)y T ¢}~ Fy and

(t = Fyor (n > 1 implies t(,—1) = [F1, F2)w)).

There is a tendency among logicians to minimize the number of
operators in a given logic. For example, it is known that two operators
are sufficient in propositional calculus, and two more (“next” and “un-
til”) are needed for future time temporal logics. There are also various
ways to minimize our past time logic defined above. More precisely,
as claimed in (Havelund and Rosu, 2002b), any combination of one
operator in the set {e,1,|} and another in the set {Ss,Sw,[)s,[)w}
suffices to define all the other past time operators. Two of these 12
combinations are known in the literature. Unlike in theoretical research,
in practical monitoring of programs we want to have as many temporal
operators as possible available and not to automatically translate them
into a reduced kernel set. The reason is twofold. On the one hand, the
more operators are available, the more succinct and natural the task of
writing requirement specifications. On the other hand, as seen later in
the paper, additional memory is needed for each temporal operator in
the specification, so we want to keep the formulae short.

4. Monitoring Requirements Expressed in Temporal Logics

Logic based monitoring consists of checking execution events against a
user-provided requirement specification written in some logic, typically
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an assertion logic with states as models, or a temporal logic with traces
as models. JPAX currently provides the two linear temporal logics dis-
cussed above as built-in logics. Multiple logics can be used in parallel,
so each property can be expressed in its most suitable language. JPAX
allows the user to define such new logics in a flexible manner, either
by using the Maude executable algebraic specification language or by
implementing specialized algorithms that synthesize efficient monitors
from logical formulae.

4.1. REWRITING BASED MONITORING

Maude (Clavel et al., 1999a; Clavel et al., 1999b; Clavel et al., 2000) is
a modularized membership equational (Meseguer, 1998) and rewriting
logic (Meseguer, 1992) specification and verification system whose op-
erational engine is mainly based on a very efficient implementation of
rewriting. A Maude module consists of sort and operator declarations,
as well as equations relating terms over the operators and universally
quantified variables; modules can be composed. It is often the case
that equational and/or rewriting logics act like universal logics, in the
sense that other logics, or more precisely their syntax and operational
semantics, can be expressed and efficiently executed by rewriting, so we
regard Maude as a good choice to develop and prototype with various
monitoring logics. The Maude implementations of the current temporal
logics are quite compact, so we include them below. They are based on a
simple, general architecture to define new logics which we only describe
informally. Maude’s notation will be introduced “on the fly” as needed
in examples.

4.1.1. Formulae and Data Structures

We have defined a generic module, called FORMULA, which defines the
infrastructure for all the user-defined logics. Its Maude code will not
be given due to space limitations, but the authors are happy to provide
it on request. The module FORMULA includes some designated basic sorts,
such as Formula for syntactic formulae, FormulaDS for formula data
structures needed when more information than the formula itself should
be stored for the next transition as in the case of past time LTL, Atom
for atomic propositions, or state variables, which in the state denote
boolean values, AtomState for assignments of boolean values to atoms,
and AtomStatex for such assignments together with final assignments,
i.e., those that are followed by the end of a trace, often requiring a
special evaluation procedure as described in the subsections on future
time and past time LTL. A state As is made terminal by applying to it
the unary operator _* : AtomState -> AtomState*. Formula is a subsort
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of FormulaDS, because there are logics in which no extra information but
a modified formula needs to be carried over for the next iteration (such
as future time LTL). The propositions that hold in a certain program
state are generated from the executing instrumented program.

Perhaps the most important operator in FORMULA is _{_} : FormulaDS
AtomState —> FormulaDS, which updates the formula data structure when
an (abstract) state change occurs during the execution of the program.
Notice the use of miz-fiz notation for operator declaration, in which
underscores represent places of arguments, their order being the one in
the arity of the operator. On atomic propositions, say A, the module
FORMULA defines the “update” operator as follows: A{As*} is true or false,
depending on whether As* assigns true or false to the atom A, where
Asx is a terminal or not atom state (i.e., an assignment from atoms
to boolean values). In the case of propositional calculus, this update
operation basically evaluates propositions in the new state. For other
logics it can be more complicated, depending on the trace semantics of
those particular logics.

4.1.2. Propositional Calculus

Propositional calculus should be included in any monitoring logic worth
its salt. Therefore, we begin with the following module which is heavily
used in JPAX. It implements an efficient rewriting procedure due to
Hsiang (Hsiang, 1981) to decide validity of propositions, reducing any
boolean expression to an exclusive disjunction (formally written _++_)
of conjunctions (_/\_):

fmod PROP-CALC is ex FORMULA .

**xx Constructors sk
op _/\_ : Formula Formula -> Formula [assoc comm]
op _++_ : Formula Formula -> Formula [assoc comm]

vars X Y Z : Formula . var Asx : AtomStatex .

eq true /\ X = X .

eq false /\ X = false .

eq false ++ X = X .

eq X ++ X = false .

eq X /\ X=X .

eq X /N (Y ++ Z) = X/\Y) ++ (X /\ 2)

**xx Derived operators *kx

op _\/_ : Formula Formula -> Formula .
op _->_ : Formula Formula -> Formula .
op _<->_ : Formula Formula -> Formula .
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op !_ : Formula -> Formula .
eq X \/Y¥Y=E/N\NY) ++ X ++Y .
eq ! X = true ++ X .
eq X > Y = true ++ X ++ (X /\ Y)
eq X <-> Y = true ++ X ++ Y .
**kx Semantics
eq (X /\ Y){As*}
eq (X ++ Y){Asx}
endfm

X{Asx} /\ Y{Asx} .
X{Asx} ++ Y{Asx}

In Maude, operators are introduced after the op and ops (when more
than one operator is introduced) symbols. Operators can be given at-
tributes in square brackets, such as associativity and commutativity.
Universally quantified variables used in equations are introduced after
the var and vars symbols. Finally, equations are introduced after the
eq symbol. The specification shows the flexible mix-fix notation of
Maude, using underscores to stay for arguments, which allows us to
define the syntax of a logic in the most natural way.

4.1.3. Future Time Linear Temporal Logic

Our implementation of the future time LTL presented in Subsection
3.1 simply consists of 8 equations, executed by Maude as rewrite rules
whenever a new event/state is received. For simplicity we only present
the strong until operator here. The weak until operator, which occurs
more rarely in monitoring requirements, can be obtained by replacing
the righthand-side of the last equation by X{As *} \/ Y{As *}:

fmod FT-LTL is ex PROP-CALC .
* %k k Syntax * %k k

op [l_ : Formula -> Formula .
op <>_ : Formula -> Formula .
op o_ : Formula -> Formula .
op _U_ : Formula Formula -> Formula .

***x Semantics ***
vars X Y : Formula . var As : AtomState .

eq ([1 X){As}
eq (<> X){As}
eq (o X){As}

eq (X U Y){As}

(I X /\ x{As} .

(<> X) \/ X{As} .

X .

Y{As} \/ (X{As} /\ X U Y))

eq ([1 X){As =}
eq (<> X){As *}

X{As *} .
X{As *} .
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X{As *} .
Y{As *} .

eq (o X){As *}
eq (X U Y){As *}
endfm

The four LTL operators are added to those of the propositional calculus
using the symbols: [1_ (always), <>_ (eventually), o_ (next), and _U_
(until). The operational semantics of these operators is based on a for-
mula transformation idea, in which monitoring requirements (formulae)
are transformed when a new event is received, hereby consuming the
event. These rules are similar in spirit to the “expansion rules” used
in tableau and automata construction for LTL (see, e.g., Chapter 5 in
(Manna and Pnueli, 1992)). The 8 equations, divided in two groups,
refine the operator _{_} : FormulaDS AtomState -> FormulaDS provided
by the module FORMULA described in Subsubsection 4.1.1. Note that in
the future time LTL case, the formulae themselves are used as data
structures, and that this is permissible because Formula is a subsort
of FormulaDS. The operator _{_} tells how a formula is transformed by
the occurrence of a state change. The interested reader can consult
(Havelund and Rosu, 2001d) for a formal correctness proof and anal-
ysis of this simple to implement rewriting algorithm. The underlying
intuition can be elaborated as follows. Assume a formula X that we want
to monitor on an execution trace of which the first state is As. Then
the equation X{As} = X’, where X’ is a formula resulting from applying
the _{_} operator to X and As, carries the following intuition: in order
for X to hold on the rest of the trace, given that the first state in the
trace is As, then X’ must hold on the trace following As. The first set of
4 rules describes this semantics assuming that the state As is not the
last state in the trace, while the last four rules apply when As is the
last in the trace. The term As * represents a state that is the last in
the trace, and reflects the before mentioned intuition that a finite trace
can be regarded as an infinite trace where the last state of the finite
trace is repeated infinitely. As an example, consider the formula:

[1(green -> (!'red) U yellow)

representing a monitoring requirement of a traffic light controller, and
a trace where the first state As makes the proposition green true and
the others false. In this case, the formula:

(] (green -> (!red) U yellow){As}
reduces by rewriting to:
(] (green -> (!red) U yellow) /\ (!red) U yellow

This reflects the fact that after the state change, (!red) U yellow now
has to be true on the remaining trace, in addition to the original always-
formula. A proof of correctness of this algorithm is given in (Havelund
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and Rosu, 2001d), together with a very simple improvement based on
memoization, which can increase its efficiency in practice by more than
an order of magnitude. The effect of memoization (which essentially
caches normal forms of terms so they will never be reduced again) is
that of building a monitoring automaton on the fly, as the formulae
(which become states in that automaton) are generated during the
monitored execution trace. Despite its overall exponential worst-case
complexity (more precisely O(22m2), where m is the size of the LTL
formula to be monitored, as shown in a more general setting in (Rosu
and Viswanathan, 2003)), our rewriting based algorithm tends to be
quite acceptable in practical situations. We couldn’t notice any signifi-
cant difference in global concrete experiments with JPAX between this
simple 8 rule algorithm and an automata-based one in (Giannakopoulou
and Havelund, 2001) that implements in 1,400 lines of Java code a Biichi
automata inspired algorithm adapted to finite trace LTL (this is due
to the highly efficient implementation of Maude).

Such a finite trace semantics for LTL used for program monitoring
has, however, some characteristics that may seem unnatural. At the
end of the execution trace, when the observed program terminates, the
observer needs to take a decision regarding the validity of the checked
properties. Let us consider now the formula [1(p -> <>q). If each p was
followed by at least one q during the monitored execution, then, at some
extent one could say that the formula was satisfied; although one should
be aware that this is not a definite answer because the formula could
have been very well violated in the future if the program hadn’t been
stopped. If p was true and it was not followed by a q, then one could say
that the formula was violated, but it may have been very well satisfied
if the program had been left to continue its execution. Furthermore,
every p could have been followed by a q during the execution, only
to be violated for the last p, in which case we would likely expect
the program to be correct if we terminated it by force. There are of
course LTL properties that give the user absolute confidence during
the monitoring. For example, a violation of a safety property reflects a
clear misbehavior of the monitored program.

The lesson that we learned from experiments with LTL monitoring
is twofold. First, we learned that, unlike in model checking or theorem
proving, future time LTL formulae and especially their violation or
satisfaction must be viewed with extra information, such as for example
statistics of how well a formula has “performed” along the execution
trace, as first suggested in (Havelund and Rosu, 2001¢) and then done
in (Finkbeiner et al., 2002). Second, we developed a belief that future
time propositional LTL may not be the most appropriate formalism
for logic based monitoring; other logics, such as real time LTL, interval
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logics, past time LTL, or most likely undiscovered ones, could be of
greater interest than pure future time LTL. We next describe an im-
plementation of past time LTL in Maude, a perhaps more natural logic
for runtime monitoring.

4.1.4. Past Time Linear Temporal Logic

Safety requirements can usually be more easily expressed using past
time LTL formulae than using future time ones. More precisely, they
can be represented as formulae []1 F, where F is a past time LTL formula
(Manna and Pnueli, 1992; Manna and Pnueli, 1995). These properties
are very suitable for logic based monitoring because they only refer
to the past, and hence their value is always either true or false in any
state along the trace, and never to-be-determined as in future time LTL.
However, the implementation of past time LTL is, surprisingly, slightly
more tedious than the above implementation of future time LTL. In
order to keep the specification short, we only include the standard
past time operators “previous” and “strong since” below, the others
being either defined similarly or just rewritten in terms of the standard
operators. Our rewriting implementation appears similar in spirit to the
one used in (Lee et al., 1999) (according to a private communication),
which also uses a version of past time logic:

fmod PT-LTL is ex PROP-CALC .
* %k % Syntax * kK
op “_ : Formula -> Formula .
op _S_ : Formula Formula -> Formula .

*%* Semantic Data structure **x*
op mkDS : Formula AtomState -> FormulaDS .

op atom : Atom Bool -> FormulaDS .

op and : FormulaDS FormulaDS Bool -> FormulaDS .
op xor : FormulaDS FormulaDS Bool -> FormulaDS .
op prev : FormulaDS Bool -> FormulaDS .

op since : FormulaDS FormulaDS Bool -> FormulaDS .

var A : Atom .

var As : AtomState .

var B : Bool .

vars X Y : Formula .

vars D D’ Dx Dx’ Dy Dy’ : FormulaDS .

eq [atom(A,B)] =B .
eq [and(Dx,Dy,B)] =
eq [xor(Dx,Dy,B)]

non
W @
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eq [prev(D,B)] =B .
eq [since(Dx,Dy,B)] = B .

eq mkDS(true, As) = true .

eq mkDS(false, As) = false .

eq mkDS(A, As) = atom(A, (A{As} == true))

ceq mkDS(X /\ Y, As) = and(Dx, Dy, [Dx] and [Dyl)
if Dx := mkDS(X, As) /\ Dy := mkDS(Y, As)

ceq mkDS(X ++ Y, As) = xor(Dx, Dy, [Dx] xor [Dyl)
if Dx := mkDS(X, As) /\ Dy := mkDS(Y, As)

ceq mkDS(™ X, As) = prev(Dx, [Dx])
if Dx := mkDS(X, As)

ceq mkDS(X S Y, As) = since(Dx, Dy, [Dyl)
if Dx := mkDS(X, As) /\ Dy := mkDS(Y, As)

*** Semantics **x*
eq atom(A,B){As} = atom(A, (A{As} == true))
ceq and(Dx,Dy,B){As} =
and (Dx’,Dy’, [Dx’] and [Dy’])
if Dx’ := Dx{As} /\ Dy’ := Dy{As} .
ceq xor (Dx,Dy,B){As} =
xor(Dx’,Dy’, [Dx’] xor [Dy’])
if Dx’ := Dx{As} /\ Dy’ := Dy{As} .
eq prev(D,B){As} = prev(D{As}, [D])
ceq since(Dx,Dy,B){As} =
since(Dx’,Dy’, [Dy’] or B and [Dx’])
if Dx’ := Dx{As} /\ Dy’ := Dy{As} .
endfm

The module first introduces the syntax of the logic and then the formula
data structure needed for past time LTL and its semantics. The data
structure consists of terms of sort FormulaDS and is needed to represent
a formula properly during monitoring. This is in contrast to future time
LTL, where a formula represented itself, and a transformation caused by
a state transition was performed by transforming the formula into a new
formula that had to hold on the rest of the trace. In past time LTL this
technique does not apply. Instead, for each formula a special tree-like
data structure is introduced, which keeps track of the boolean values
of all subformulae of the formula in the latest considered state. These
values are used to correctly evaluate the value of the entire formula
when the next state is received. The operation mkDS creates the data
structure representing a formula. The constructors of type FormulaDS
correspond to the different kinds of past time LTL operators: atom (for
atomic propositions), and, xor, prev, and since. Hence, for example, the
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formula ~ A (previously A) for some atomic proposition A is represented
by prev(atom(A, true), false) in case A is true in the current state
but was false in the previous state. Hence the second boolean argument
represents the current value of the formula, and is returned by the [_]
operation. The mkDS operation that creates the initial data structures
from formulae is defined when the first, or the initial, event/state is
received.

Once the data structure is initialized, the operation mkDS is not
used anymore. Instead, the operation {_} : FormulaDS AtomState ->
FormulaDS is iteratively used to modify the formula data structure
on each subsequent state. The equations for operators and, xor, prev
and since are defined using conditional equations (ceq). Conditions
are provided after the if keyword. They can introduce new variables
via built-in matching operators (_:=_). For example, if a formula data
structure has the form since(Dx, Dy, B), where Dx and Dy are other
formula data structures and B is the current boolean value of the as-
sociated “since” formula, then, when receiving a new state As, we first
update the child data structures into Dx’ and Dy’, and then update
the current value of the formula as expected: it is true if and only if
the value associated with Dy’ is true (i.e., if its second argument holds
now) or else both the value associated with Dx’ is true (i.e., its first
argument holds now) and B is true (i.e., the formula’s value at the
previous step was true). The binary operator _==_ is also built-in and
takes two terms of any sort, reduces them to their normal forms, and
then returns true if they are equal and false otherwise.

4.2. EFFICIENT OBSERVER GENERATION

Even though the rewriting based monitoring algorithms presented in
the previous subsection perform quite well in practice, there can be
situations in which one wants to minimize the monitoring overhead
as much as possible. Additionally, despite their simplicity and ele-
gance, the procedures above require an efficient AC rewriting engine
(for propositional calculus simplifications) which may not be available
or may not be desirable on some monitoring platforms, such as, for
example, within an embedded system. In this subsection we present
two efficient monitoring algorithms, one for future time and the other
for past time LTL.

4.2.1. PFuture Time LTL

In this section we overview an algorithm built on the ideas in Subsection
4.1.3, taking as input a future time LTL formula and generating a spe-
cial finite state machine (FSM), called binary transition tree finite state
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machine (BTT-FSM), that can then be used as an efficient monitor.
We here only present it at a high level and put emphasis on examples.
A BTT-FSM for the traffic light control formula [](green -> 'red U
yellow) discussed in Subsection 4.1.3 can be seen in Figure 2 (Figure
3 shows a more formal representation).

State | BTT for non-terminal events | BTT for terminal events

<z

2 false @ true false

Figure 2. A BTT-FSM for the formula [](green -> !red U yellow).

One should think of transitions using BTTs as naturally as possible;
for example, if the BTT-FSM in Figure 2 is in state 1 and a non-
terminal event is received, then: first evaluate the proposition yellow;
if true then stay in state 1 else evaluate green; if false then stay in
state 1 else evaluate red; if true then report “formula violated” else
move to state 2. When receiving a terminal event, due to termination
of monitoring, if the BTT-FSM is in state 1 then evaluate yellow and
if true then return true else the opposite result of evaluating green.
Only true/false messages are reported on terminal events, so the BTT's
executed on terminal events are just Binary Decision Diagrams (BDDs)
(Bryant, 1986).

These FSMs can be either stored as data structures or generated as
source code (case statements) which can further be compiled into actual
monitors. BTT-FSMs only need to evaluate at most all the propositions
in order to proceed to the next state when a new event is received, so
the runtime overhead is actually linear with the number of distinct
variables at worst. The size of our FSMs can become a problem when
storage is a scarce resource, so we pay special attention to generating
optimal FSMs. Interestingly, the number of propositions to be evaluated
tends to decrease with the number of states, so the overall monitor-
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ing overhead is also reduced. The drawback of generating an optimal
BTT-FSM statically, i.e., before monitoring, is the possibly double ex-
ponential time/space required at startup (compilation). Therefore, we
recommend this algorithm only in situations where the LTL formulae
to monitor are relatively small in size and the runtime overhead is
necessary to be minimal.

Informally, our algorithm to generate minimal FSMs from LTL for-
mulae uses the rewriting based algorithm presented in the previous
section statically on all possible events, until the set of formulae to
which the initial LTL formula can “evolve” stabilizes. More precisely,
it builds a FSM whose states are formulae and whose transitions are
“events”, which are regarded as propositions on state boolean variables.
Whenever a new potential state ¥, that is an LTL formula, is generated
via a new event, that is a proposition on state variables p, from an
existing state ¢, ¥ is semantically compared with all the previously
generated states. If the v is not equivalent to any other existing state
then it is added as a new state in the FSM. If found semantically
equivalent to an already existing formula, say v’, then it is not added
to the state space, but the current transition from ¢ to ¢’ is updated by
taking its disjunction with p (if no transition from ¢ to ¢’ exists then
a transition p is added). The semantical comparison is done using a
validity checker for finite trace LTL that we have developed especially
for this purpose. All these techniques are described and analyzed in
more detail in (Havelund and Rosu, 2002a). It is worth mentioning,
though, that a minimal BTT-FSM can be generated precisely because
we work with finite traces instead of infinite traces; the finite traces
satisfying an LTL formula form a regular language, so they admit a
minimal deterministic FSM.

Once the steps above terminate, the formulae ¢, v, etc., encoding
the states are not needed anymore, so we replace them by unique la-
bels in order to reduce the amount of storage needed to encode the
BTT-FSM. This algorithm can be relatively easily implemented in any
programming language. We have, however, found Maude again a very
elegant system, implementing this whole algorithm in about 200 lines
of Maude code.

This BTT-FSM generation algorithm, despite its overall startup ex-
ponential time, can be very useful when formulae are relatively short.
For the traffic light controller requirement formula discussed previously,
[1(green -> (!red) U yellow), our algorithm generates in about 0.2 sec-
onds the optimal BTT-FSM in Figure 3 (also shown in Figure 2 in
flowchart notation).
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State Non-terminal event Terminal event
1 yellow 7 1 : green ? red ? false : 2: 1 | yellow ? true : green ? false : true
2 yellow 7 1 : red 7 false : 2 yellow 7 true : false

Figure 3. An optimal BTT-FSM for the formula [](green -> !red U yellow).

For simplicity, the states true and false do not appear in Figure
3. Notice that the proposition red does not need to be evaluated on
terminal events and that green does not need to be evaluated in state
2. In this example, the colors are not supposed to exclude each other,
that is, the traffic controller can potentially be both green and red.

The LTL formulae on which our algorithm has the worst perfor-
mance are those containing many nested temporal operators (which
are not frequently used in specifications anyway, because of the high
risk of getting them wrong). For example, it takes our algorithm 1.3
seconds to generate the minimal 3-state (true and false states are not
counted) BTT-FSM for the formulaa U (b U (c U d)) and 13.2 seconds
to generate the 7-state minimal BTT-FSM for the formula ((a U b)
U c) U d. It never took our current implementation more than a few
seconds to generate the BTT-FSM of any LTL formula of interest
for our applications (i.e., non-artificial). Figure 4 shows the generated
BTT-FSM of some artificial LTL formulae, taking together less than
15 seconds to be generated.

The generated BTT-FSMs are monitored most efficiently on RAM
machines, due to the fact that case statements are usually implemented
via jumps in memory. Monitoring BTT-FSMs using rewriting does not
seem appropriate because it would require linear time (as a function
of the number of states) to extract the BTT associated to a state
in a BTT-FSM. However, we believe that the algorithm presented in
Subsection 4.1.3 is satisfactory in practice if one is willing to use a
rewriting engine for monitoring.

4.2.2. Past Time LTL

We next focus on generating efficient monitors from formulae in past
time LTL. The generated monitoring algorithm tests whether the for-
mula is satisfied by a finite trace of events given as input and runs
in linear time and space in terms of both the formula and the size of
trace. We only show how the generated monitoring algorithm looks for
a concrete past time formula example, referring the interested reader
to (Havelund and Rosu, 2002b) (a detailed presentation on monitoring
past time LTL formulae will appear soon elsewhere).
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Formula State | Non-terminal event Terminal event
0%a 1 1 a?t:f
O(0a V O-a) 1 1 t
O(a — Ob) 1 a?(b?71:2):1 a?®?7t:f):t
2 b?71:2 b7t:f
ald (bU c) 1 c?t:(a?1:(b72:1)) c?t:f
2 c?t:(b72:1) c?t:f
ald (U (cU d))|1 d?7t:a?1:0672:¢?73:f|d7t:f
2 d?7t:0672:¢?73:f d?7t:f
3 d?7t:c?73:f d?7t:f
((aUUb)UC)UA|1 d?7t:¢c?71:0674:a?75:f|d7t:f
2 b?7c¢?7t:7:a?7¢?76:2:f|c?7b?7t:f:f
3 b?7d?7t:c?1:4:a?7d? |d?7b7t:f:f
6:¢?73:5:f
4 c?7d?7t:1:672d?77:4: |d?7c?t:f:f
a?d?2:5:f
5 b?7d?7c¢c?t:7:¢?71:4: [d?7c?b?7t:f:f:f
a?d?c?76:2:¢73:5:f
6 b?7t:a?76:f b?7t:f
7 c?t:b?77:a?72:f c?t:f

Figure 4. Six BTT-FSMs generated in less than 15 seconds.

25

We think that the next example is practically sufficient for the reader
to foresee our general algorithm in (Havelund and Rosu, 2002b). Let
Tp— gl (rVvs))s be the past time LTL formula that we want to
generate code for. The formula states: “whenever p becomes true, then
q has been true in the past, and since then we have not yet seen the
end of r or s”. The code translation depends on an enumeration of the
subformulae of the formula that satisfies the enumeration invariant
any formula has an enumeration number smaller than the numbers of
all its subformulae. Let g, 1, ..., pg be such an enumeration:

Tp—lg.l(rvs)s,

Yo =
P11 =
P2 =
p3 =
P4
Y5 =
Y6 =
2
ps =

1 p,
P,
lq,! (rv

= q

L (rvs),

rVs,

:’[”7

S.

5))s;

Note that the formulae have here been enumerated in a post-order
fashion. One could have chosen a breadth-first order, or any other
enumeration, as long as the enumeration invariant is true.

fmsd-rv0l.tex; 28/08/2003; 15:20; p.25



26

The input to the generated program will be a finite trace ¢ =
ejes...e, of n events. The generated program will maintain a state via a
function update : State x Event — State, which updates the state with
a given event. Our generated algorithms are dynamic programming
algorithms based on the recursive nature of the semantics of past time
LTL as shown in Subsection 3.2. In order to illustrate the dynamic pro-
gramming aspect of the solution, one can imagine recursively defining
a matrix s[1..n,0..8] of boolean values {0, 1}, with the meaning that
s[i,j] = 1 iff t;) = ;. This would be the standard way of regarding
the above satisfaction problem as a dynamic programming problem.
An important observation is, however, that, like in many other dy-
namic programming algorithms, one doesn’t have to store all the table
s[1..n,0..8], which would be quite large in practice; in this case, one
needs only s[i,0..8] and s[i — 1,0..8], which we’ll write now|0..8] and
pref[0..8] from now on, respectively. It is now only a relatively simple
exercise to write up the following algorithm for checking the above
formula on a finite trace:

State state — {};

bit pre[0..8]; bit now|0..8];

INPUT: trace t = ejes...ep;

/* Initialization of state and pre */
state < update(state, eq);

]
pre[7] «— r(state);
pre[6] < pre[7] or pre[8];
pre[5] « false;
pre[4] « q(state);
pre[3] « pre[4] and not pre[5];
pre[2] — p(state);
pre[l] « false;

pre[0] < not pre[l] or pre[3];
/* Event interpretation loop */
for i =2tondo {
state <« update(state, €;);
now|8] «— s(state);

— now[7] or now|8];
— not now(6] and pre[6];

— (pre[3] or now[4]) and not now|5];

3
S
g
o
3
S
~
3
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3
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if now[0] = 0 then output(‘ ‘property violated’’);
pre — now;

}
In the following we explain the generated program.

Declarations Initially a state is declared. This will be updated as the
input event list is processed. Next, the two arrays pre and now are
declared. The pre array will contain values of all subformulae in
the previous state, while now will contain the value of all subfor-
mulae in the current state. The trace of events is then input. Such
an event list can be read from a file generated from a program
execution, or alternatively the events can be input on-the-fly one
by one when generated, without storing them in a file first.

Initialization The initialization phase consists of initializing the state
variable and the pre array. The first event e; of the event list is
used to initialize the state variable. The pre array is initialized
by evaluating all subformulae bottom up, starting with highest
formula numbers, and assigning these values to the corresponding
elements of the pre array; hence, for any i € {0...8} pre[i] is
assigned the initial value of formula ¢;. The pre array is initialized
in such a way as to maintain the view that the initial state is sup-
posed stationary before monitoring is started. This in particular
means that 7 p is false, as well as is | (r V s), since there is no
change in state (indices 1 and 5). The interval operator has the
obvious initial interpretation: the first argument must be true and
the second false for the formula to be true (index 3). Propositions
are true if they hold in the initial state (indices 2, 4, 7 and 8), and
boolean operators are interpreted the standard way (indices 0, 6).

Event Loop The main evaluation loop goes through the event trace,
starting from the second event. For each such event, the state is
updated, followed by assignments to the now array in a bottom-
up fashion similar to the initialization of the pre array: the array
elements are assigned values from higher index values to lower
index values, corresponding to the values of the corresponding
subformulae. Propositional boolean operators are interpreted the
standard way (indices 0 and 6). The formula T p is true if p is true
now and not true in the previous state (index 1). Similarly with
the formula | (r V s) (index 5). The formula [g, | (7 V s)); is true
if either the formula was true in the previous state, or ¢ is true
in the current state, and in addition | (r V s) is not true in the
current state (index 3). At the end of the loop an error message is
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issued if now|[0], the value of the whole formula, has the value 0 in
the current state. Finally, the entire now array is copied into pre.

Given a past time LTL formula, the analysis of this algorithm is straight-
forward. Its time complexity is ©(n) where n is the length of the input
trace, the constant being given by the size of the formula. The memory
required is constant, since the length of the two arrays is the size of the
formula. However, if one also includes the size of the formula, say m,
into the analysis; then the time complexity is obviously ©(n - m) while
the memory required is 2 - (m + 1) bits. It is hard to find algorithms
running faster than the above in practical situations, though some slight
optimizations can be imagined as shown below.

Even though a smart compiler can in principle generate good ma-
chine code from the code above, it is still worth exploring ways to
synthesize directly optimized code especially because there are some
attributes that are specific to the runtime observer which a compiler
cannot take into consideration. A first observation is that not all the
bits in pre are needed, but only those which are used at the next
iteration, namely 2, 3, and 6. Therefore, only a bit per temporal oper-
ator is needed, thereby reducing significantly the memory required by
the generated algorithm. Then the body of the generated “for” loop
becomes after (blind) substitution (we don’t consider the initialization
code here):

state «— update(state, ;)
now(3] « r(state) or s(state)
now|2] « (pre2] or q(state)) and not (not now[3] and pre[3])
now|[1l] < p(state)
if ((not (now[1] and not pre[l]) or now[2]) = 0)
then output(‘ ‘property violated’’);

which can be further optimized by boolean simplifications:

state < update(state, ;)
now[3] < r(state) or s(state)
now|[2] < (pre[2] or q(state)) and (now[3] or not pre[3])
now[1] < p(state)
if (now[1] and not pre[l] and not now[2])
then output(‘ ‘property violated’’);

The most expensive part of the code above is clearly the function calls,
namely p(state), q(state), r(state), and s(state). Depending upon the
runtime requirements, the execution time of these functions may vary
significantly. However, since one of the major concerns of monitoring
is to affect the normal execution of the monitored program as little
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as possible, especially in online monitoring, one would of course want
to evaluate the propositions on states only if really needed, or rather
to evaluate only those that, probabilistically, add a minimum cost.
Since we don’t want to count on an optimizing compiler, we prefer
to store the boolean formula as some kind of binary decision diagram.
We have implemented a procedure in Maude, on top of a propositional
calculus module, which generates all correct (_?_: _)-expressions for ¢,
admittedly a potentially exponential number in the number of distinct
atomic propositions in ¢, and then chooses the shortest in size. Applied
on the code above, it yields:

state < update(state, ;)
now|[3] « r(state) 7 1 : s(state)
now(2] «— pre[3] 7 pre[2] 7 now[3]
q(state) : pre[2] 71 : q(state)
now([1] < p(state)
if (pre[1] 70 : now[2] 70 : now[I])
then output(‘ ‘property violated’’);

We would like to extend our procedure to take the evaluation costs of
propositions, or rather: predicates, into consideration. These costs can
either be provided by the user of the system or be calculated automat-
ically by a static analysis of predicates’ code, or even be estimated by
executing the predicates on a sample of states. However, based on our
examples so far, we conjecture that, given a boolean formula ¢ in which
all the atomic propositions have the same cost, the probabilistically
runtime optimal (-7_: _)-expression implementing ¢ is ezactly the one
which is smallest in size.

A further optimization would be to generate directly machine code
instead of using a compiler. Then the arrays of bits now and pre can
be stored in two registers, which would be all the memory needed.
Since all the operations executed are bit operations, the generated
code is expected to be very fast. One could even imagine hardware
implementations of past time monitors, using the same ideas, in order
to enforce safety requirements on physical devices.

5. Experiments

The JPaX system has been applied to several case studies, amongst
them a planetary rover executive (K9), a spacecraft fault protection
system (FP), and a spacecraft attitude control system (ACS). JPaX’s
temporal logic monitoring capability was used to analyze K9 as well as
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FP, while JPaX’s concurrency analysis was used to analyze K9 as well
as ACS.

The most interesting application of these with respect to temporal
logic monitoring is the planetary rover K9, written in 35,000 lines of
C++. K9 takes as input a plan, which states what actions to execute
and when. The objective of K9 is to execute the plan correctly. The
plan can for example be created by mission engineers on ground, and
up-linked to the rover, or it can be generated automatically on board by
a different software module. Testing K9 using temporal logic consists of
generating a test-suite, consisting of a set of test-cases, each consisting
of an input plan, and a set of temporal logic formulae that the execution
of this plan must satisfy. In an initial experiment, a down-scaled Java
version (approximately 7,300 lines of code) of K9 was analyzed (Brat
et al., 2003). The purpose was to compare different verification tools.
The study involved several test groups, each applying a different tool
to the same system. The techniques studied included temporal logic
monitoring, deadlock and data race trace analysis, model checking,
static analysis, and traditional testing. The reader is referred to (Brat
et al., 2003) for a presentation of the results of this comparison. In the
case of temporal logic monitoring, test-suites were written by hand.
Temporal logic turned out to catch errors that were missed by just
visually inspecting the output from running K9. However, manually
writing a set of temporal formulae for each test-case turned out to be
time consuming.

We therefore decided, based on the above experiment, to create a
fully automated framework for testing the K9 rover. The framework,
named X9 (Artho et al., 2003a), automatically generates plans using
model checking of a (non-deterministic) grammar of plans. Each gen-
erated plan is an “error trace” generated by the model checker, when
it executes an assert(false) statement that occurs “at the end of”
the grammar. For each plan a set of temporal properties is furthermore
automatically generated that the execution of that plan must satisfy.
The program is hand-instrumented in a few places, where actions start
executing, and where they terminate, either successfully, or by failure.
The instrumentation overhead on the running program is small, and not
noticeable. This demonstrates how the observer part of JPaX can be
used independently of the instrumentation part, and hence be applied
to programs in other languages than Java, in this case C++.

When X9 is applied to K9, several hundred test-cases can be gener-
ated within a few seconds, each consisting of an input plan and a set of
temporal properties. Each generated plan is subsequently executed, and
the extracted execution trace is checked against the temporal formulae
for that plan. Results are displayed on a web-site by displaying for each
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failed test-case links to the plan, the execution trace, and the temporal
properties violated. Checking a resulting execution trace against its
temporal formulae typically takes a couple of seconds, where most of
this time is spent on starting the oracle engine (Maude). The checking
of the trace itself takes only few milliseconds. To test the effectiveness
of the approach, the K9 code was seeded with errors. X9 detected the
errors automatically, highlighting the plans that caused the properties
to be violated, and the violating execution traces. Beyond automati-
cally generating and executing the test-cases, the method showed the
importance of making it unnecessary to manually analyze thousands of
lines of output.

K9 (the C++ version as well as the Java version) and ACS (written
in 1850 lines of Java) were both analyzed using the concurrency algo-
rithms in JPaX. JPaX found an unknown deadlock in the C++4 version
of K9 and two unknown data races in ACS. Furthermore, JPaX found
all seeded deadlocks (cyclic lock acquisitions) and data race errors in
the Java version of K9 and in ACS. The K9 concurrency analysis results
are described in (Brat et al., 2003). Further case studies with high-level
data race analysis are described in (Artho et al., 2003b).

6. Conclusions

We have presented work done in context of the JPAX runtime verifi-
cation tool. JPAX provides an integrated environment for monitoring
the execution of Java programs. A program is instrumented to generate
an execution trace when run, which can then be examined by various
specialized algorithms that we have described. Amongst these are algo-
rithms for testing the trace against future time and past time temporal
logic formulae. We have presented how such logics can be formulated in
a rewriting logic, and how the Maude rewriting system can be used to
monitor the validity of the execution trace against such formulae. It has
also been shown how observer automata and algorithms can be gener-
ated from future time and past time temporal logic formulae, to achieve
even more efficient observer algorithms. An interesting observation is,
however, that the implementation of these logics in the Maude rewriting
system resulted in very small code, and still compared very well with the
automata/algorithm solutions in efficiency. Using Maude for defining
new observer logics seems to be an excellent prototyping approach at
least, and even seems fast enough for practical monitoring. Future work
includes studying more powerful logics, including real-time information
and data. Concerning concurrency analysis, we are currently expanding
the kinds of errors that can be found by simple trace analysis. Runtime
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verification can be used during testing or after deployment, during
operation of the software. An important and non-trivial research topic
is how to correct the behavior of a program on-the-fly when properties
are violated.
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